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ABSTRACT
Community detection is an important task in network anal-
ysis. A community (also referred to as a cluster) is a set
of cohesive vertices that have more connections inside the
set than outside. In many social and information networks,
these communities naturally overlap. For instance, in a so-
cial network, each vertex in a graph corresponds to an in-
dividual who usually participates in multiple communities.
One of the most successful techniques for finding overlapping
communities is based on local optimization and expansion
of a community metric around a seed set of vertices. In
this paper, we propose an efficient overlapping community
detection algorithm using a seed set expansion approach.
In particular, we develop new seeding strategies for a per-
sonalized PageRank scheme that optimizes the conductance
community score. The key idea of our algorithm is to find
good seeds, and then expand these seed sets using the per-
sonalized PageRank clustering procedure. Experimental re-
sults show that this seed set expansion approach outper-
forms other state-of-the-art overlapping community detec-
tion methods. We also show that our new seeding strategies
are better than previous strategies, and are thus effective in
finding good overlapping clusters in a graph.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms, Experimentation

Keywords
Clustering, Community Detection, Overlapping Clusters,
Seeds, Seed Set Expansion

1. INTRODUCTION
In many social and information networks, nodes partic-

ipate in multiple communities. For instance, in a social
network, a node’s communities correspond to its social cir-
cles [18]. We study the problem of overlapping community
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detection to find these groups. More specifically, we investi-
gate how to select the seed sets in a method for overlapping
community detection that grows communities around seeds.
These local expansion methods are among the most suc-
cessful strategies for overlapping community detection [26].
However, principled methods to choose the seeds are few
and far between. When they exist, they are usually compu-
tationally expensive, for instance, using maximal cliques as
seeds [23]. Empirically successful strategies include exhaus-
tively exploring all individual seeds and greedy methods that
randomly pick a vertex, grow a cluster, and continue with
any unassigned vertex. The goal of traditional, exhaustive
clustering is to determine a cluster for each and every data
point or node. In the community detection problem, instead,
we wish to relax this goal and allow incomplete coverage of
the network. Put another way, the data may not support
assigning a node to a community and we want to respect
that feature in our output.

The seeding strategies we consider are based on the same
distance kernel that underlies the equivalence between ker-
nel k-means and spectral clustering [9]. Using this distance
function, we can efficiently locate a good seed within an ex-
isting set of vertices of the graph. In particular, a strategy
we propose involves computing many clusters using a multi-
level weighted kernel k-means algorithm on the graph (the
Graclus algorithm) [9]. We use the corresponding distance
function to compute the “centroid vertex” of each cluster
and then use the neighborhood set of that centroid vertex
as the seed region for community detection. This strategy is
inspired by recent work on finding the best communities in
a network using a carefully selected set of vertex neighbor-
hoods as seeds [11]. These seeds were centers within their
respective vertex neighborhoods. In this paper, we take this
idea further and consider using the centers of larger regions.

The algorithm we use to grow a seed is based on person-
alized PageRank random walks, which we explain further
in Section 4.3. The full algorithm to compute overlapping
clusters from the seeds is discussed in Section 4. The algo-
rithm begins by filtering out regions of the graph that will
not participate in an overlapping clustering. We run the
seed finding algorithm and the seed expansion method on
the filtered graph. We then post-process this output to as-
sign communities for the vertices removed by filtering. We
show that a simple propagation of our communities to the
removed regions does not increase the underlying objective
function. The main contributions of this paper are:
• we propose using a kernelized distance function to de-

termine seeds for an overlapping community detection
strategy based on a high quality partitioning;
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• we find that using a seeding strategy based on the cen-
troids of communities returned from Graclus, a high
quality graph partitioning scheme [9], outperforms other
strategies for choosing the seeds;
• we find that an independent set of high-degree vertices,

a strategy we call “spread hubs”, performs almost as
well as the Graclus clusters in terms of accuracy;
• we also find that all of the seed set expansion strategies

significantly outperform existing methods in identify-
ing a set of known communities.

Our method scales to problems with over 45 million edges,
whereas other state of the art methods for overlapping clus-
tering were unable to complete on these large datasets.

2. RELATED WORK

2.1 Overlapping community detection
We summarize a few closely related methods from a re-

cent survey [26]. The method we employ is called local
optimization and expansion. Starting from a seed, such a
method greedily expands a community around that seed un-
til it reaches a local optima of the community detection
objective. In our case, we use a personalized PageRank
based cut finder for the local expansion method (see Sec-
tion 4.3). Other overlapping community detection methods
include line graph partitioning, clique percolation, eigenvec-
tor methods, egonet analysis, and low-rank models. Given
a graph G = (V, E), the line graph of L(G) – also known
as the dual graph – has a vertex for each edge in G and
an edge whenever two edges (in G) share a vertex. For
instance, the line graph of a star is a clique. A partition-
ing of the line graph induces an overlapping clustering in
the original graph [3]. Clique percolation methods look for
overlap between fixed size cliques in the graph [20]. Clique
based techniques often fail to scale to large networks. Eigen-
vector methods generalize spectral methods and use a soft
clustering scheme applied to eigenvectors of the normalized
Laplacian or modularity matrix in order to estimate commu-
nities [28]. Egonet analysis methods use the theory of struc-
tural holes [7], and compute and combine many communities
through manipulating egonets [22, 8]. We compare against
the Demon method [8] that uses this strategy. Finally, we
note that other low-rank methods such as non-negative ma-
trix factorizations [15, 27] identify overlapping communities
as well. We compare against the Bigclam method [27] that
uses this approach.

2.2 Seeding strategies
Determining how to seed a local expansion method is, ar-

guably, the critical problem within these methods. Strate-
gies to do so include using maximal cliques [26], prior in-
formation [10], or locally minimal neighborhoods [11]. The
latter method was shown to identify the vast majority of
good conductance sets in a graph; however, there was no
provision made for total coverage of all vertices.

2.3 Graph kernels and distances
The foundation of our new seeding strategy is a distance

kernel between vertices. Our choice of kernel underlies the
relationship between kernel k-means and spectral cluster-
ing [9]. Many other graph kernels involve the exponential or
inverse of a matrix [14]. Any such kernel with an efficient
means of computing distances would suffice.

3. PRELIMINARIES
In this section, we discuss the overlapping community de-

tection problem, and review some traditional metrics for
graph clustering.

3.1 Problem statement
Given a graphG = (V, E) with vertex set V and edge set E ,

the graph clustering problem is to partition the graph into k
disjoint clusters C1, · · · , Ck such that V = C1∪· · ·∪Ck. While
graph clustering traditionally finds exhaustive and disjoint
clusters, the overlapping community detection problem is to
find overlapping clusters that are not necessarily exhaustive.
Formally, we seek k overlapping clusters such that C1 ∪ · · · ∪
Ck ⊆ V. Throughout the paper, the terms set, cluster, and
community are used interchangeably.

3.2 Measures of cluster quality
We can represent a graph with n vertices as an n × n

adjacency matrix A such that Aij = eij where eij is the
weight of an edge between vertices i and j, or Aij = 0 if there
is no edge. We assume that all the graphs are undirected
graphs, i.e., A is symmetric. Let us define links(Cp, Cq) to
be the sum of edge weights between vertex sets Cp and Cq.

Now, we review some popular measures for gauging the
quality of clusters: cut, conductance, and normalized cut.

Cut. The cut of cluster Ci is defined as the sum of edge
weights between Ci and its complement, V\Ci. That is,

cut(Ci) = links(Ci,V\Ci). (1)

Conductance. The conductance of a cluster is defined
to be the cut divided by the least number of edges incident
on either set Ci or V\Ci:

cond(Ci) =
links(Ci,V\Ci)

min

„
links(Ci,V), links(V\Ci,V)

« .
By definition, cond(Ci) = cond(V\Ci). The conductance of a
cluster is the probability of leaving that cluster by a one-hop
walk starting from the smaller set between Ci and V\Ci.

Normalized Cut. The normalized cut of a cluster is
defined by the cut with volume normalization as follows:

ncut(Ci) =
links(Ci,V\Ci)
links(Ci,V)

. (2)

Notice that ncut(Ci) is always lesser than or equal to cond(Ci).

3.3 Graph clustering and weighted kernel k-
means

It has been shown that a weighted graph clustering objec-
tive is equivalent to a weighted kernel k-means objective [9].
For example, for the exhaustive graph clustering problem,
the normalized cut objective of a graph G is

ncut(G) = min
C1,...,Ck

kX
i=1

links(Ci,V\Ci)
links(Ci,V)

. (3)

This objective can be shown to be equivalent to a weighted
kernel k-means objective by defining a weight for each data
point (vertex) to be the degree of the vertex, and the ker-
nel matrix to be K = σD−1 + D−1AD−1, where D is the
diagonal matrix of degrees (i.e., Dii =

Pn
j=1Aij), and σ is

a scalar typically chosen to make K positive-definite. Then,
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we can quantify the distance between a vertex v ∈ Ci and
cluster Ci, denoted dist(v, Ci), as follows:

dist(v, Ci) = (4)

− 2 links(v, Ci)
deg(v) deg(Ci)

+
links(Ci, Ci)
deg(Ci)2

+
σ

deg(v)
− σ

deg(Ci)

where deg(v) = links(v,V), and deg(Ci) = links(Ci,V).

3.4 Datasets
We use eight different real-world networks from [1], [19],

[24]. The networks are presented in Table 1. All the net-
works are connected, undirected graphs.

Collaboration networks. In a collaboration network,
vertices indicate authors, and edges indicate co-authorship.
If authors u and v wrote a paper together, there exists an
edge between them. So, if a paper is written by k authors,
this is represented by a k-clique in the network. HepPh,
AstroPh, and CondMat networks are constructed based on
the papers submitted to High Energy Physics (Phenomenol-
ogy) category, Astrophysics category, and Condensed Mat-
ter Physics category under the arXiv e-print service, re-
spectively. The DBLP network is constructed based on the
DBLP computer science bibliography website.

Social networks. In a social network, vertices represent
individuals and edges represent social interactions between
them. Flickr is an online photo sharing application, Myspace
is a social entertainment networking service, and LiveJour-
nal is a blogging application where users can publish their
own journals. Users can make a friendship relationship with
each other in each of these websites.

Product network. In the Amazon product network, ver-
tices represent products and edges represent co-purchasing
information. If products u and v are frequently co-purchased,
there exists an undirected edge between them.

Table 1: Summary of networks

Graph No. of vertices No. of edges

Collaboration networks
HepPh 11,204 117,619
AstroPh 17,903 196,972
CondMat 21,363 91,286
DBLP 317,080 1,049,866

Social networks
Flickr 1,994,422 21,445,057
Myspace 2,086,141 45,459,079
LiveJournal 1,757,326 42,183,338

Product network
Amazon 334,863 925,872

4. OVERALL ALGORITHM
Now, we explain the overall algorithm which consists of

four phases: filtering, seeding, seed set expansion, and prop-
agation. In the filtering phase, we remove regions of the
graph that are trivially separable from the rest of the graph,
so will not participate in overlapping clustering. In the seed-
ing phase, we find seeds in the filtered graph, and in seed
set expansion phase, we expand the seed sets using a per-
sonalized PageRank clustering scheme. Finally, in the prop-
agation phase, we further expand the communities to the
regions that were removed in the filtering phase.

4.1 Filtering Phase
The goal of the filtering phase is to identify regions of the

graph where an algorithmic solution is required to identify
the overlapping clusters. To explain our filtering step, re-
call that almost all graph partitioning methods begin by as-
signing each connected component to a separate partition.
Any other choice of partitioning for disconnected compo-
nents is entirely arbitrary. The Metis procedure [12], for
instance, may combine two disconnected components into a
single partition in order to satisfy a balance constraint on
the partitioning. For the problem of overlapping clustering,
an analogous concept can be derived from biconnected com-
ponents. Formally, a biconnected component is defined as
follows:

Definition 1. Given a graph G = (V, E), a biconnected
component is a maximal induced subgraph G′ = (V ′, E ′) that
remains connected after removing any vertex and its adja-
cent edges in G′.

Let us define the size of a biconnected component to be
the number of edges in G′. Now, consider all the biconnected
components of size one. Notice that there should be no over-
lapping partitions that use these edges because they bridge
disjoint communities. Consequently, our filtering procedure
is to find the largest connected component of the graph af-
ter we remove all single-edge biconnected components. We
call this the “biconnected core” of the graph even though it
may not be biconnected. Let ES denote all the single-edge
biconnected components. Then, the biconnected core graph
is defined as follows:

Definition 2. The biconnected core GC = (VC , EC) is
the maximum size connected subgraph of G′′ = (V, E \ ES).

Notice that the biconnected core is not the 2-core of the
original graph. Subgraphs connected to the biconnected
core are called whiskers by Leskovec et al. [16]. Formally,
whiskers are defined as follows:

Definition 3. A whisker W = (VW , EW ) is a maximal
subgraph of G that can be detached from the biconnected core
by removing a bridge,

where a bridge is defined as follows:

Definition 4. A bridge is a biconnected component of
size one which is directly connected to the biconnected core.

Let EB be all the bridges in a graph. Notice that EB ⊆ ES .
On the region which is not included in the biconnected core
graph GC , we define the detached graph GD as follows:

Definition 5. GD = (VD, ED) is a subgraph of G which
is induced by V \ VC .

Finally, given the original graph G = (V, E), V and E can
be decomposed as follows:

Proposition 1. Given a graph G = (V, E), V = VC ∪VD
and E = EC ∪ ED ∪ EB.

Proof. This follows from the definitions of the bicon-
nected core, bridges, and the detached graph.
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Table 2: Biconnected core and the detached graph

Biconnected core Detached graph

No. of vertices (%) No. of edges (%) No. of components Size of the LCC (%)

HepPh 9,945 (88.8%) 116,099 (98.7%) 1,123 21 (0.0019%)
AstroPh 16,829 (94.0%) 195,835 (99.4%) 957 23 (0.0013%)
CondMat 19,378 (90.7%) 89,128 (97.6%) 1,669 12 (0.00056%)
DBLP 264,341 (83.4%) 991,125 (94.4%) 43,093 32 (0.00010%)
Flickr 954,672 (47.9%) 20,390,649 (95.1%) 864,628 107 (0.000054%)
Myspace 1,724,184 (82.7%) 45,096,696 (99.2%) 332,596 32 (0.000015%)
LiveJournal 1,650,851 (93.9%) 42,071,541 (99.7%) 101,038 105 (0.000060%)
Amazon 291,449 (87.0%) 862,836 (93.2%) 25,835 250 (0.00075%)

Figure 1: Biconnected core, whiskers, and bridges
– grey region indicates the biconnected core where
vertices are densely connected to each other, and
blue components indicate whiskers. Red edges in-
dicate bridges which connect the biconnected core
and each of the whiskers.

Figure 1 illustrates the biconnected core, whiskers, and
bridges. The output of our filtering phase is the biconnected
core graph where whiskers are filtered out. The filtering
phase removes regions of the graph that are clearly parti-
tionable from the remainder. More importantly, there is no
overlap between any of the whiskers. This indicates that
there is no need to apply overlapping community detection
algorithm on the detached regions.

Table 2 shows the sizes of the biconnected core and the
connectivity of the detached graph in our real-world net-
works. Details of these networks are presented in Table 1.
We compute the size of the biconnected core in terms of the
number of vertices and edges. The number reported in the
parenthesis shows how many vertices or edges are included
in the biconnected core, i.e., the percentages of |VC |/|V|
and |EC |/|E|, respectively. We also compute the number
of connected components in the detached graph, and the
size of the largest connected component (LCC in Table 2)
in terms of the number of vertices. The number reported
in the parenthesis indicates the relative size of the largest
connected component compared to the number of vertices
in the original graph.

We can see that the biconnected core contains the sub-
stantial portion of the edges. In terms of the vertices, the
biconnected core contains around 80 or 90 percentage of the
vertices for all datasets except Flickr. In Flickr, the bi-
connected core only contains around 50 percentage of the
vertices while it contains 95 percentage of edges. This indi-
cates that the biconnected core is dense while the detached

graph is quite sparse. Recall that the biconnected core is
one connected component. On the other hand, in the de-
tached graph, there are many connected components, which
implies that the vertices in the detached graph are likely to
be disconnected with each other. Notice that each connected
component in the detached graph corresponds to a whisker.
So, the largest connected component can be interpreted as
the largest whisker. Based on the statistics of the detached
graph, we can see that whiskers tend to be separable from
each other, and there are no significant size whiskers. Also,
the size gap between the biconnected core and the largest
whisker is significant.

4.2 Seeding Phase
Once we get the biconnected core graph, we find seeds in

this filtered graph. The goal of an effective seeding strategy
is to identify a diversity of vertices that lie within a cluster
of good conductance. This identification should not be too
expensive. In this situation, the Andersen-Chung-Lang the-
orem about the personalized PageRank community finder [4]
suggests it is a good method to grow the seeds (Section 4.3).

Graclus centers. One way to achieve these goals is to
first apply a high quality and efficient graph partitioning
scheme in order to compute a collection of sets with fairly
small conductance. For each set (cluster), we find the most
central vertex according to the kernel that corresponds to
the normalized cut measure. The idea here is roughly that
we want something that is close to the partitioning – which
ought to be good – but that uses overlap to produce bet-
ter boundaries between the partitions. See Algorithm 1 for
the full procedure. In practice, we perform top-down hier-
archical clustering using Graclus [9] to get a large number
of clusters. Then, we take the center of each cluster as a
seed – the center of a cluster is defined to be the vertex that
is closest to the cluster centroid; see step 7 in Algorithm 1.
If there are several vertices whose distances are tied for the
center of a cluster, we include all of them.

Spread Hubs. From another viewpoint, the goal is to
select a set of well-distributed seeds in the graph, such that
they will have high coverage after we expand the sets. We
greedily choose an independent set of k points in the graph
by looking at vertices in order of decreasing degree. For
this heuristic, we draw inspiration from the distance func-
tion (4), which shows that the distance between a vertex
and a cluster is inversely proportional to degree. Thus, high
degree vertices are expected to have small distances to many
other vertices. This also explains why we call the method
spread hubs. It also follows from the results in Gleich and Se-
shadhri [11], which state that there should be good clusters
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Algorithm 1 Seeding by Graclus Centers

Input: graph G, the number of seeds k.
Output: the seed set S.
1: Compute exhaustive and non-overlapping clusters Ci

(i=1, ..., k) on G.
2: Initialize S = ∅.
3: for each cluster Ci do
4: for each vertex v ∈ Ci do
5: Compute dist(v, Ci) using (4).
6: end for
7: S = {argmin

v
dist(v, Ci)} ∪ S.

8: end for

around high degree vertices in power-law graphs with high
clustering coefficients. We use an independent set in order
to avoid picking seeds nearby each other. Our full procedure
is shown in Algorithm 2. As the algorithm proceeds explor-
ing hubs in the network, if there are several vertices whose
degrees are the same, we take an independent set of those
that are unmarked. This step may result in more than k
seeds, however, the final number of returned seeds does not
exceed the input k too much because there usually aren’t
too many high degree vertices.

Algorithm 2 Seeding by Spread Hubs

Input: graph G = (V, E), the number of seeds k.
Output: the seed set S.
1: Initialize S = ∅.
2: All vertices in V are unmarked.
3: while |S| < k do
4: Let T be the set of unmarked vertices with max de-

gree.
5: for each t ∈ T do
6: if t is unmarked then
7: S = {t} ∪ S.
8: Mark t and its neighbors.
9: end if

10: end for
11: end while

Local Optimal Egonets. This strategy was presented
in [11]. Let ego(s) denote the egonet of vertex s which is
defined to be the union of s and its neighbors. [11] takes an
egonet whose conductance is smaller than the conductance
of any of its neighbors’ egonets, that is, they select a seed s
such that

cond(ego(s)) ≤ cond(ego(v))

for all v adjacent to s.
Random Seeds. Given the number of seeds k, we ran-

domly take k seeds in the graph. Andersen and Lang gave
some theoretical justification for why this method should be
competitive [5].

4.3 Seed Set Expansion Phase
Once we have a set of seed vertices, we wish to expand

the clusters around those seeds. An effective technique for
this task is a personalized PageRank vector, also known as
a random-walk with restart (RWR) [21]. A personalized
PageRank vector is the stationary distribution of a random
walk that, with probability α follows a step of a random

Algorithm 3 Find a low conductance set near a seed

Input: graph G, seed set S, PageRank link-following prob-
ability parameter 0 < α < 1, accuracy ε > 0

Output: low conductance set C.
1: Initialize xv, rv=0 for v ∈ V, set rv=1/|S| for all v ∈ S
2: while Any rv > deg(v)ε, set v to this vertex do
3: Update xv = xv + (1− α)rv.
4: For each (v, u) ∈ E,

update ru = ru + αrv/(2 deg(u))
5: Update rv = αrv/2
6: end while
7: Sort vertices by decreasing xv/ deg(v)
8: For each prefix set of vertices in the sorted list, compute

the conductance of that set and set C to be the set that
achieves the minimum.

walk and with probability (1−α) jumps back to a seed node.
If there are multiple seed nodes, then the choice is usually
uniformly random. Thus, nodes close by the seed are more
likely to be visited. Recently, such techniques were shown
to produce communities that best match communities found
in real-world networks [2]. In fact, personalized PageRank
vectors have surprising relationships to graph cuts and clus-
tering methods [4]. Andersen et al. show that a particular
algorithm to compute a personalized PageRank vector, fol-
lowed by a sweep over all cuts induced by the vector, will
identify a set of good conductance within the graph. They
proved this via a “localized Cheeger inequality” that states,
informally, that the set identified via this procedure has a
conductance that isn’t too far away from the best conduc-
tance of any set containing that vertex. More recently, Ma-
honey et al. [17] show that personalized PageRank is, effec-
tively, a seed-biased eigenvector of the Laplacian. They also
show a limit to relate the personalized PageRank vectors to
the Fiedler vector of a graph.

We briefly summarize the procedure in Algorithm 3. Please
see Andersen et al. [4] for a full description of the algorithm.
This procedure is closely related to a coordinate descent
optimization procedure [6] on the PageRank linear system.
Although it may not be apparent from the procedure, this
algorithm is remarkably efficient when combined with ap-
propriate data structures. The algorithm keeps two vectors
of values for each vertex, x and r. In a large graph, most
of these values will remain zero on the vertices and hence,
these need not be stored. Our implementation uses a hash
table for the vectors x and r. Consequently, the sorting step
is only over a small fraction of the total vertices. Typically,
we find this method takes only a few milliseconds, even for
a large graph.

In the personalized PageRank clustering scheme, there
are two parameters: α and ε. We follow standard prac-
tice for PageRank clustering on an undirected graph and
set α = 0.99 [16]. This value yields results that are similar
to those without damping, yet have bounded computational
time. The parameter ε is an accuracy parameter. As ε→ 0,
the final vector solution x tends to the exact solution of the
PageRank linear system. When used for clustering, how-
ever, this parameter controls the effective size of the final
cluster. If ε is large (about 10−2), then the output vector
is inaccurate, incredibly sparse, and the resulting cluster is
small. If ε is small, say 10−8, then the PageRank vector
is accurate, nearly dense, and the resulting cluster may be
large. We thus run the PageRank clustering scheme about
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13 times, with a range of accuracy parameters that are em-
pirically designed to produce clusters with between 1 and
50,000 times the number of edges in the initial seed set. The
final community we select is the one with the best conduc-
tance score from these 13 possibilities. The seed set for each
run is the vertex neighborhood of a seed node. As reported
in [11], we found that this yielded better performance and
larger clusters.

4.4 Propagation Phase
Once we get the personalized PageRank communities on

the biconnected core graph, we further expand each of the
communities to the regions that we detached in the filtering
phase. Our assignment procedure is straightforward: for
each detached whisker connected via a bridge, we add that
piece to all of the clusters that utilize the other vertex in the
bridge. This procedure is described in Algorithm 4. In this
way, each community Ci is expanded.

We now show that this method only improves the final
clustering result in terms of the normalized cut metric. To
do this, we need to fix some notation. Let EBi be a set
of bridges which are attached to Ci, and WCi be a set of
whiskers which are attached to the bridges, i.e., WCi =
(VWi , EWi) where

wj = (Vj , Ej) ∈WCi ; VWi =
[

wj∈WCi

Vj ; and EWi =
[

wj∈WCi

Ej .

Finally, let C′i denote the expanded Ci, where |C′i| ≥ |Ci|.
Equality holds in this expression when there is no bridge
attached to Ci. When we expand Ci using Algorithm 4, C′i
is equal to {Ci

S
VWi}. The following results show that we

only decrease the size of the (normalized) cut by adding the
whiskers.

Theorem 1. If a community Ci is expanded to C′i using
Algorithm 4, cut(C′i) = cut(Ci)− links(VWi , Ci).

Proof. Recall that cut(Ci) is defined as follows:

cut(Ci) = links(Ci,V \ Ci).
= links(Ci,V)− links(Ci, Ci).

Let us first consider links(C′i,V) as follows:

links(C′i,V) = links(Ci,V) + links(VWi ,V)− links(VWi , Ci).

Notice that links(VWi ,V) = links(VWi ,VWi)+links(VWi , Ci).
Thus, links(C′i,V) can be expressed as follows:

links(C′i,V) = links(Ci,V) + links(VWi ,VWi).

Now, let us compute cut(C′i) as follows:

cut(C′i) = links(C′i,V)− links(C′i, C′i).
= links(Ci,V) + links(VWi ,VWi)− links(C′i, C′i).

Notice that links(C′i, C′i) = links(VWi ,VWi)+links(Ci, Ci)+
links(VWi , Ci).
Finally, cut(C′i) can be expressed as follows:

cut(C′i) = cut(Ci)− links(VWi , Ci).

Theorem 2. If a community Ci is expanded to C′i using
Algorithm 4, ncut(C′i) ≤ ncut(Ci).

Proof. Recall that

ncut(Ci) =
cut(Ci)

links(Ci,V)
.

On the other hand, by Theorem 1, we can represent ncut(C′i)
as follows:

ncut(C′i) =
cut(C′i)

links(C′i,V)
.

=
cut(Ci)− links(VWi , Ci)

links(Ci,V) + links(VWi ,VWi)
.

Therefore, ncut(C′i) ≤ ncut(Ci). The equality holds when
there is no bridge attached to Ci, i.e., EBi = ∅.

Algorithm 4 Propagation Module

Input: graph G = (V, E), biconnected core GC = (VC , EC),
communities of GC : Ci (i = 1, ..., k) ∈ C.

Output: communities of G.
1: for each Ci ∈ C do
2: Detect bridges EBi attached to Ci.
3: for each bj ∈ EBi do
4: Detect the whisker wj = (Vj , Ej) which is attached

to bj .
5: Ci = Ci ∪ Vj .
6: end for
7: end for

4.5 Time Complexity Analysis
We summarize the time complexity of our overall algo-

rithm in Table 3. The filtering phase requires computing bi-
connected components in a graph, which takes O(|V|+ |E|)
time. The complexity of “Graclus centers” seeding strategy
is determined by the complexity of hierarchical clustering
using Graclus. Recall that “Spread hubs” seeding strategy
requires nodes to be sorted according to their degrees. Thus,
the complexity of this strategy is bounded by the sorting
operation. Let degmax denote the maximum degree in GC .
The “Local optimal egonet” seeding requires computing tri-
angles, which takes O(|EC | degmax). Expanding each seed
requires solving multiple personalized PageRank clustering
problems. The complexity of this operation is complicated
to state compactly [4], but it scales with the output size of
the final cluster, links(Ci,VC). Finally, our simple propa-
gation procedure scans the regions that were not included
in the biconnected core and attaches them to a cluster.

Table 3: Time complexity of each phase.

Phase Time complexity

Filtering O(|V|+ |E|)

Seeding

Graclus centers O(dlog ke(|VC |+ |EC |))
Spread hubs O(|VC | log |VC |+ k)
Local egonets O(|EC | degmax)
Random O(k)

Seed expansion O(
Pk
i links(Ci,VC))

Propagation O(
Pk
i (EBi

+ VWi
+ EWi

))

5. EXPERIMENTAL RESULTS
We compare our seed set expansion algorithm with two

other state-of-the-art overlapping community detection meth-
ods: Demon [8] and Bigclam [27]. For Demon, and Bigclam,
we used the software which is provided by the authors of [8]
and [27], respectively. All the experiments are performed on
a computer with a Xeon X5440 2.83GHz CPU and 32GB
memory. In Demon, we set ε = 0.3. In Bigclam, we use
default parameter settings the software provides. Our seed
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set expansion algorithm is written in a mixture of C++ and
MATLAB. Bigclam supports multi-threaded execution.

In the following experiments: the labels“demon”and“big-
clam” refer to the output from these methods. We refer to
our method by the origin of the seeding strategy discussed
in Section 4.2. Both “graclus centers” and “spread hubs”
are the new methods we propose in this manuscript. The
“egonet” method uses the seeding strategy from Gleich and
Seshadhri [11], and “random” refers to random seeds.

5.1 Graph coverage
In the first experiment we conduct, we report on the out-

put of each of the six methods on the eight networks which
are presented in Table 1. Table 4 shows the returned num-
ber of clusters and the graph coverage of each algorithm.
The “demon” implementation fails on Flickr, Myspace and
LiveJournal on a computer with 32GB memory. (In fact, we
tried this algorithm on another machine with 256GB mem-
ory and it also failed.) Using 20 threads, “bigclam” does not
finish on the Myspace network after running for one week.

The graph coverage indicates how many vertices are as-
signed to clusters (i.e., the number of assigned vertices di-
vided by the total number of vertices in a graph). Note that
we can control the number of seeds k in “graclus centers”,
“spread hubs”, and “random” seeds. We also can specify the
number of clusters k in “bigclam”. We set k (in our meth-
ods and “bigclam”) as 100 for HepPh, 200 for AstroPh and
CondMat, 15,000 for Flickr, Myspace, and LiveJournal, and
25,000 for DBLP and Amazon. Since we remove duplicate
clusters after the PageRank expansion, the returned num-
ber of clusters can be smaller than k. Also, since we choose
all the tied seeds in “graclus centers” and “spread hubs”,
the returned number of clusters of these algorithms can be
slightly larger than k. Recall that we use a top-down hier-
archical clustering scheme in the “graclus centers” strategy.
So, in this case, the returned number of clusters before filter-
ing the duplicate clusters is slightly greater than or equal to
2dlog ke. On the other hand, the number of seeds in“egonets”
is determined within the seeding algorithm. Demon also de-
termines the number of clusters based on datasets. We can
see that “graclus centers” and “spread hubs” methods cover
larger portions of the graph than other methods across all
the datasets.

5.2 Community quality using conductance
We evaluate the quality of overlapping clustering in terms

of the maximum conductance of any cluster. A high qual-
ity algorithm should return a set of clusters that covers a
large portion of the graph with small maximum conduc-
tance. This objective function has been studied theoreti-
cally in the context of overlapping clustering [13] and there
exists an approximation algorithm, although it is expensive
computationally.

Figure 2 shows the quality-vs-coverage for the six algo-
rithms we study on the six networks where we do not have
ground truth community information. For each method, we
first sort the clusters according to conductance measure in
ascending order, and then greedily take clusters until a cer-
tain percentage of the graph is covered. The x-axis of each
plot is the graph coverage, and the y-axis is the maximum
conductance value among the clusters we take. We can in-
terpret this plot as follows: we need to use the cluster whose
conductance score is y to cover x percentage of the graph.

Note that lower conductance indicates better quality of clus-
ters. That is, the lower curve indicates better clusters. As
can be seen in the plots, our algorithm with“graclus centers”
seeding strategy outperforms the other methods. Also the
simple “spread hubs” outperforms “egonet”, random seeds,
Demon, and Bigclam. The original motivation for our stud-
ies in this paper was that egonet seeding did not produce
high coverage.

5.3 Community quality via ground truth
We have ground truth communities for the DBLP and

Amazon networks, thus, for these networks, we compare
against these communities instead of using the conductance
measure. In DBLP, each publication venue (i.e., journal or
conference) corresponds to an individual ground truth com-
munity. In the Amazon network, each ground truth com-
munity is defined to be a product category that Amazon
provides. Given a set of algorithmic communities C and
the ground truth communities S, we compute F1 measure
and F2 measure to evaluate the relevance between the algo-
rithmic communities and the ground truth communities. In
general, Fβ measure is defined as follows:

Fβ(Si) = (1 + β2)
precision(Si) · recall(Si)

β2 · precision(Si) + recall(Si)

where β is a non-negative real value, and the precison and
recall of Si ∈ S are defined as follows:

precision(Si) =
|Cj
T
Si|

|Cj |
,

recall(Si) =
|Cj
T
Si|

|Si|
,

where Cj ∈ C, and Fβ(Si) = Fβ(Si, Cj∗) where j∗ = argmax
j

Fβ(Si, Cj). Then, the average Fβ measure is defined to be

F̄β =
1

|S|
X
Si∈S

Fβ(Si).

Given an algorithmic community, precision indicates how
many vertices are actually in the same ground truth commu-
nity. Given a ground truth community, recall indicates how
many vertices are predicted to be in the same community in
a retrieved community. By definition, the precision and the
recall are evenly weighted in F1 measure. On the other hand,
the F2 measure puts more emphasis on recall than precision.
The authors in [27] who provided the datasets argue that it
is important to quantify the recall since the ground truth
communities in these datasets are partially annotated, i.e.,
some vertices are not annotated to be a part of the ground
truth community even though they actually belong to that
community. This indicates that it would be reasonable to
weight recall higher than precision, which is done by the F2

measure.
In Figure 3, we report the average F1 and F2 measures

on DBLP and Amazon networks. On the DBLP network,
“spread hubs” is the best, and “graclus centers” is the second
best in terms of F1 measure. With respect to F2 measure,
“graclus centers” is the best and “spread hubs” is the second
best. On Amazon network,“spread hubs”is the best in terms
of both F1 and F2 measures. We also notice that all seed
set expansion algorithms outperform Demon and Bigclam –
even when we use“random”seeding strategy. We discuss this
observation more comprehensively in our discussion section.
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Table 4: Returned number of clusters and graph coverage of each algorithm

Graph random egonet graclus ctr. spread hubs demon bigclam

HepPh coverage (%) 97.1 72.1 100 100 88.8 62.1
no. of clusters 97 241 109 100 5,138 100

AstroPh coverage (%) 97.6 71.1 100 100 94.2 62.3
no. of clusters 192 282 256 212 8,282 200

CondMat coverage (%) 92.4 99.5 100 100 91.2 79.5
no. of clusters 199 687 257 202 10,547 200

DBLP coverage (%) 99.9 86.3 100 100 84.9 94.6
no. of clusters 21,272 8,643 18,477 26,503 174,627 25000

Amazon coverage (%) 99.9 100 100 100 79.2 99.2
no. of clusters 21,553 14,919 20,036 27,763 105,828 25,000

Flickr coverage (%) 76.0 54.0 100 93.6 - 52.1
no. of clusters 14,638 24,150 16,347 15,349 - 15,000

LiveJournal coverage (%) 88.9 66.7 99.8 99.8 - 43.9
no. of clusters 14,850 34,389 16,271 15,058 - 15,000

Myspace coverage (%) 91.4 69.1 100 99.9 - -
no. of clusters 14,909 67,126 16,366 15,324 - -
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(e) LiveJournal
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Figure 2: Conductance vs. graph coverage – lower curve indicates better communities. Overall, “graclus
centers” outperforms other seeding strategies, including the state-of-the-art methods Demon and Bigclam.
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Figure 3: F1 and F2 measures comparing our algorithmic communities to ground truth – a higher bar
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Figure 4: Runtime on Amazon and DBLP – The
seed set expansion algorithm is faster than Demon
and Bigclam.

5.4 Comparison of running times
Finally, we compare the algorithms by runtime. Figure 4

and Table 5 show the runtime of each algorithm. We run
the single thread version of Bigclam for HepPh, AstroPh,
CondMat, DBLP, and Amazon networks, and use the multi-
threaded version with 20 threads for Flickr, Myspace, and
LiveJournal networks.

As can be seen in Figure 4, the seed set expansion meth-
ods are much faster than Demon and Bigclam on DBLP and
Amazon networks. On small networks (HepPh, AstroPh,
CondMat), our algorithm with “spread hubs” is faster than
Demon and Bigclam. On large networks (Flickr, LiveJour-
nal, Myspace), our seed set expansion methods are much
faster than Bigclam even though we compare a single-threaded
implementation of our method with 20 threads for Bigclam.

6. DISCUSSION AND CONCLUSION
We now discuss the results from our experimental investi-

gations. First, we note that our seed set expansion method
was the only method that worked on all of the problems.
Also, our method is faster than both Bigclam and Demon.

Our seed set expansion algorithm is also easy to parallelize
because each seed can be expanded independently. This
property indicates that the runtime of the seed set expan-
sion method could be further reduced in a multi-threaded
version. Also, we can use any other high quality partition-
ing scheme instead of Graclus including those with parallel
and distributed implementations [25]. Perhaps surprisingly,
the major difference in cost between using Graclus centers
for the seeds and the other seed choices does not result from
the expense of running Graclus. Rather, it arises because
the personalized PageRank expansion technique takes longer
for the seeds chosen by Graclus and spread hubs. When the
PageRank expansion method has a larger input set, it tends
to take longer, and the input sets we provide for the spread
hubs and Graclus seeding strategies are the neighborhood
sets of high degree vertices.

Another finding that emerges from our results is that us-
ing random seeds outperforms both Bigclam and Demon.
We believe there are two reasons for this finding. First, ran-
dom seeds are likely to be in some set of reasonable conduc-
tance as also discussed by Andersen and Lang [5]. Second,
and importantly, a recent study by Abrahao [2] showed that
personalized PageRank clusters are topologically similar to
real-world clusters [2]. Any method that uses this technique
will find clusters that look real.

Finally, we wish to address the relationship between our
results and some prior observations on overlapping commu-
nities. The authors of Bigclam found that the dense regions
of a graph reflect areas of overlap between overlapping com-
munities. By using a conductance measure, we ought to
find only these dense regions – however, our method pro-
duces much larger communities that cover the entire graph.
The reason for this difference is that we use the entire ver-
tex neighborhood as the restart for the personalized PageR-
ank expansion routine. We avoid seeding exclusively inside
a dense region by using an entire vertex neighborhood as a
seed, which grows the set beyond the dense region. Thus, the
communities we find likely capture a combination of commu-
nities given by the egonet of the original seed node. To ex-
pand on this point, in experiments we omit due to space, we
found that seeding solely on the node itself – rather than us-
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Table 5: Running times of different methods on our test networks

Graph random egonet spread hubs graclus ctr. bigclam demon

HepPh 21s 25s 31s 4m 12m 46s
AstroPh 10s 17s 41s 3m 30s 49m 1m
CondMat 7s 35s 52s 1m 35s 8m 1m 14s

Flickr 30m 40m 1h 40m 6h 49m 59h 35m -
LiveJournal 34m 56m 2h 18m 4h 12m 50h -
Myspace 27m 2h 29m 7h 9m 17h 15m > 7 days -

ing the vertex neighborhood – resulted in significantly worse
performance in terms of conductance-vs-coverage.

Overall, our seed set expansion strategies significantly out-
performed both Demon and Bigclam, two state of the art
overlapping community methods in runtime, conductance-
vs-coverage, and ground-truth accuracy.
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